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L INTRODUCTION

We consider multi-hop packet radio topologies, where environmental disturbances dictate
the deployment of dynamic assignments for the transmission channels or frequencies. Then,
dynamically reconfigurated cluster topologies result, and system connectivity is ensured via
store-and-forward operations deployed by users located in cluster boundaries. At each point in
time, the system induces a topology as that exhibited in Figure 1, where the same topology has
been considered in [1]. In each cluster, a single common channel is used for transmissions by
the ordinary nodes (or users) in it. The clusterhead in each cluster is one of the ordinary nodes
(or users) and its function is to monitor the multiple access transmission algorithm in the cluster,
and to provide the required feedbacks. The gateway nodes together with the clusterheads form
the backbone network in the system, and ensure intracluster connectivity. The dynamics of the
cluster formations and the structure of the backbone network are directly related to the opera-
tional and performance characteristics of the deployed multiple-access algorithms.

In the topologies considered here, the performance criteria include reliability, connectivity,
economy, bandwidth efficiency, effective control of transmission delays, and robustness in the
presence of channel errors. For reliability, economy, and bandwidth efficiency, the deployed
multiple access algorithms should require very little knowledge about the system state by the
users, since such knowledge can be obtained only at the expense of available bandwidth and its
use requires complex and expensive hardware, and since the mobile users are generally unable to
maintain overall system state information at ail times. Thus, for the present topologies, we only
consider Limited Sensing Random Access Algorithms (LSRAAS) for transmission, (as those in
[3] and [4]). Those algorithms only require that each user know the algorithmic operations, can
detect the transmission frequency of the cluster he is located in, and can sense the channel feed-
back from the time he generates a packet to the time that this packet is successfully transmitted;
they do not require additional knowledge about the system state or topological information.

As the topology in Figure 1 evolves dynamically, and for better system connectivity, neigh-
boring clusters may overlap (see [1], for example). The ordinary nodes locate. " the overlap-
ping regions are then exposed to transmissions and feedbacks from more than one clusters; a
generally time-varying phenomenon due to the mobility of the ordinary nodes, which can be
exploited for the improvement in performance of the overall system, (as done in [2], for the
mobile telephone system). Consider, for example, clusters 1 and 2 in Figure 1, and let us call the
ordinary nodes in their overlapping region, marginal users; let us call the ordinary nodes in clus-
ter i, i=1,2, which are not located in the overlapping region, local users for cluster i. The local
users in cluster i communicate via the LSRAA deployed by the cluster, called LSRAA], i=1,2.
Due to the double exposure, the marginal users have a choice: For communication with each
other and system connectivity, they can join either one of the LSRAA1 and LSRAA2 algo-
rithmic systems. This choice can be implemented either dynamically, dictated by the two feed-
back sequences (from the two clusters) that the marginal users observe, or statically; the specif-
ics of its implementation will be called, interconnection algorithm. A static interconnection algo-
rithm 1s represented by a priori assigned probabilities. Then, upon generation of a new packet,
each marginal user joins the LSRAAI with probability p;, i=1,2, where p; + p; = 1, and remains
there until his packet is successfully transmitted. The above static policy is simple, but requires
that the marginal users know the a priori assigned probabilities at all times. In the dynamically
changing topologies considered here, those probabilities should change dynamically and their
values should remain knowr to all users. But this implics kaowledge of the system dynamics at
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all imes, which is either very hard to obtain or requires a tremendous increase in feedback infor-
mation, (and thus tremendous increase in the bandwidth of the feedback channels). Therefore,
only dynamic interccnnection algorithms are appropriate for the mobile multi-hop packet radio
system. Such algorithms may in addition give an advantage to the marginal users, in terms of
delays. This may be desirable in systems where the marginal users transmit either priority mes-
sages or control data, (including topological information for reconfiguration of the cluster struc-
ture, etc.).

In this paper, we consider two overlapping clusters, each deploying a LSRAA for its local
users. Then, we propose a dynamic interconnection algorithm, via which marginal users join
either one of the local per cluster LSRAA. For each of the two local LSRAAs, we adopt the Lin-
ited sensing form of the algorithm in [4]. The latter algorithm has simple operational properties,
in the presence of the limit Poisson user model it attains throughput 0.43, it has superior resis-
tance to feedback errors, and operates with binary-collision versus noncollision-feedback.

The organization of the paper is as follows: In Section II, we present the system model. In
Section III, we describe the local LSRAAs and the algorithm that the marginal users deploy. In
b Section TV, we present the algorithmic analysis of the two-cluster system. In Section V, we
include comments and conclusions.
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0. SYSTEM MODEL

We consider the two-cluster packet-radio system in Figure 1. We assume that in each of
the two clusters, some synchronous LSRAA is deployed. In particular: (1) Time is divided in
slots of length equal to the duration of a packet, and the starting instants of the slots are identical
in both clusters. (2) In each cluster, the clusterhead broadcasts a feedback per slot, which
corresponds to the outcomes induced by the local LSRAA. This feedback is either ternary, Col-
lision (C) versus Success (S) versus Emptiness (E), or binary, Collision (C) versus Non-Collision
(NC). (3) In each cluster, each local user is required to monitor the feedback "~ 'm the local
| ® clusterhead continuously, from the time he generates a new packet to the time tha: :his packet is

[ /]
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P

2 successfully transmitted. We assume that no propagation delays and no forward or feedback

< channel errors exist in the system.

y We assume that each marginal user receives the feedbacks from both the local clusterheads
A correctly and without propagation delays. At the time when a marginal user generates a new
¢ packet, he starts monitoring the feedbacks from both clusterheads continuously, until he decides
- to join the operations of one of the two LSRAAS, for the transmission of his packet. Upon this
v, decision, he maintains the continuous monitoring of only those feedbacks that correspond to the
- LSRAA he chose, until his packet is successfully transmitted.

'.Ei It is assumed that the mobility of the users in the system is low enough, so that each user
¢ remains within the same geographical region (local or marginal) from the time he generates a

.- packet to the time that this packet is successfully transmitted. If the local LSRAAs in each clus-
" ter have good delay characteristics, then this time period may be relatively small, with high pro-
Y bability.

. The local user populations in each cluster and the marginal user population are all modelled
M as limit Poisson. That is, it is assumed that the local traffic generated in cluster i, i=1, 2, is a
N Poisson process with intensity A;, i=1,2, and that the traffic generated by the marginal users is
2
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another Poisson process with intensity A;. As found in [5], for a large class of LSRAAs, the
limit Poisson user model provides a lower bound in performance, within the class of identical
and independent users whose packet generating process is i.i.d.

III. THE ALGORITHMS

We assume that the two LSRAA s in the system are identical. Each LSRAA is the window
algorithm in [4], which induces throughput 0.43 and operates with binary C versus NC feedback.
This algorithm has simple properties and operations, while the algorithm in [3] is more complex.
In addition, the algorithm in [4] has superior resistance to feedback errors.

Upon generation of a new packet, a marginal user imagines himself belonging to the sys-
tems of both the LSRAAs and follows their algorithmic steps, until the first time that he enters a
collision resolution event in one of them. Then, he remains with the latter LSRAA system, until
his packet is successfully transmitted.

In this paper, we consider the case where each local LSRAA is the limited sensing version
of the two-cell algorithm in (4]. The reasons for this choice are several: This algorithm attains
high enough throughput and induces low delays, while at the same time has simple operational
and analytical properties, and is very resistant to feedback errors. For completeness, we describe
the algorithm here.

Let time be measured in slot units, where slot t occupies the time interval [t, t+1). Let x, ()
denote the feedback that corresponds to slot t, for cluster j; j=1,2, where x;(j)=C and x,(j)=NC
represent collision and noncollision slot t in cluster j, respectively. The local LSRAA in cluster j
is implemented independently by each user in the system, and utilizes a window of length A. Let
some local in cluster j user generate a new packet within the time interval [t;, ty+1). Then, he
immediately starts observing the feedback sequence {x.(j)}e,, beginning with the feedback
Xy, (). Let us define the sequence {t;(j)}ix2, as follows: t;(j) is the first time after 1, such that
X1, 5) ) = Xy, j-1 = NC. Then, as will be explained below, t;(j) corresponds to the . .ing slot of a
Collision Resolution Interval (CRI) in cluster j, and from t;(j)+1 on, the user cai identify the
ending slots of CRIs induced by the algorithm in cluster j. Each t;(j) corresponds to the ending
slot of some CRI in cluster j, and t;,; (j) is the first after t;(j) such slot. At t;(j), the user updates
his arrival instant, as follows: t D =1, + (i-2)A; we call the sequence {t{V )52, updates. Let t,(j)
be such that: t(DE(t;(})}is2, 1 <ti()~1-A ; ¥igk—1, and t{¥>t, (j)~1-A. Then, in slot t()+1,
the user enters a CRI within the LSRAA of cluster j, and transmits his packet successfully during
its process. He stops observing the feedback sequence {x,(j)} at the point when his packet is
sucessfully transmitted. If the user is instead marginal, then he observes both feedback
sequences {x;(1)}ry, and {x(2)},, and follows the evolution of both the time sequences
{t(D)}i>2 and {;(2) }i>2- If e (1)<t (2), then in slot ¢, (1)+1 he enters a CRI within the LSRAA of
cluster 1, and transmits his packet successfully during its process. If t,(1)>t,(2), instead, then he
joins a CRI in cluster 2, in slot t (2)+1. If t (1)=t, (2), then he selects one of the local LSRAAs
with probability 0.5. The above, describe the first entry rules, for the local and the marginal
users; that is, how and when each newly generated packet first starts participating in some CRI,
for its successful transmission. From the first entry rule that the marginal users utilize, it is clear
that they have an advantage over the local for clusters 1 and 2 users. In particular, their waiting
time until they first enter some CRI is generally smaller than that of the local users; thus, their
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overall delays are generally smailer than those of the local users as well.

Consider the algorithm in cluster j, and let it start operating at time zero. Then, slot 1 is
empty. In slot 2, the arrivals in [0,1) are transmitted, and a CRI begins. If the number of arrivals
in [0,1) is less than two, then x3(j}=NC, the CRI lasts one slot, and a new CRI begins with siot 3.
If the number of arrivals in [0,1) is at least two, then x;(j)=C, instead, and the CRI lasts as long
as it takes to resolve the collision in slot 2; its end is identifiable by all the users in the system,
(as will be seen below). In general, let T be a slot that corresponds to the end of some CRI.
Then, in slot T+1, all the users with current updates in (T-A~1,T-1] transmit. If x,(j)=NC,
then the CRI which started with slot T+1 lasts one slot, and a new CRI starts with slot T+2. If
x1+1({§)=C, instead, then a collision occurs, whose resolution starts with slot T+2. No arrivals
that did not participate in the collision at T+! are transmitted, until the latter is resolved. During
the collision resolution, each involved user acts independently, via the utilizaton of a counter
whose value at time t is denoted r,. The counter values can be either 1 or 2, and they are updated
and utilized according o the rules below.

1. The user tranmits in slot t, if and only if r,=1. A packet is successfully transmitted in t, if
and only if r,=1 and x,=NC.

2. The counter values transition in time as follows:
(a) If x1=NCandr_,=2, thenr=1

(b) Ifxi.;=Candr_;=2, thenr=2

(¢) Ifx1=Candr_;=1, then

1, with probability 0.5
Tt =1 2, with probability 0.5

A CRI which starts with a collision, ends when it becomes known to all users that the initially

collided packets have been successfully transmitted. From the operations exhibited above, it is

not hard to see that such a CRI ends the first time (after its beginning) that two consecutive NC

slots occur.

IV. ALGORITHMIC ANALYSIS

For convenience in notation, we will refer to the local users in cluster 1, the local users in
cluster 2, and the marginal users, as subsystem 1, subsystem 2, and subsystem 3, respectively. In
the algorithmic analysis, we will adopt the limit Poisson user model (infinitely many indepen-
dent Bemoulli users) for each of the three subsystems. In particular, we will assume that the
three subsystem traffics are mutually independent, and that the user traffic in subsystem j,
j=1,2,3, is limit Poisson with intensity A,;.

Consider either one of the local LSRAAs, whose operations are described in section III.
Consider some CRI within the system of the LSRAA, which starts with transmissions from
packet arrivals in an arrival interval of cumulative length, u. We will call u, the "length of the
examined interval.” Let us then define:

E{llu}: Given length of the examined interval equal to u, the expected number of slots
needed for its resolution; that is, for the successful transmission of all the arrivals
in the examined interval.
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Lpx-n: Given that n packets have counter values equal to 1, and k-n packets have counter
values equal to 2, the expected number of slots needed by the local LSRAA, for
the successful transmission of all the k packets.

Then, directly from the results in [4], we have:
Loo=Lio=1, Lo;=1+Lio; =l

(D

0<Lhos%k2+%k-2;k>_l

If the arrivals in the examined interval are controlled by a limit Poisson process whose
intensity is A, then:

.0 k
E{llu)} iEx{llu} =Y Loe™ (%) @)
5 !

As found in [4], in the presence of the limit Poisson user model, each local LSRAA has
throughput 0.43, attained for window size A* = 2.33. Thus, in view of the system considered in
this paper, the Poisson intensities A;, j=1,2,3, must satisfy the following necessary conditions, for
overall system stability:

A; <0.43, and A, <0.43, and A, + Ag + A3 < 2(0.43) = 0.86 3)

The necessary conditions in (3) determine a {A;, j=1,2,3} hyperplane, which contains the
(A, j=1,2,3) region that determines the system throughput. Tight bounds on the {A;, j=1,2,3)}
space which provides the system throughput, will be attained via the system stability analysis in
Section IV.1 below.

IV.1. System Stability

We consider the evolution of the algorithms in the two-cluster system, and we assume that
the system starts operating at time zero. Let us consider the sequence in time of the CRlIs
induced by the two LSRAAs in the system. Let the sequence {T,}n>¢ be such that: (1) For each
n, T, corresponds to the starting point of a slot which is the beginning of some CRI. We note
that at T,, two CRIs may simultaneously begin; one for each of the two LSRAAs in the system.
(2) T, is the first after T,; time instant which corresponds to the beginning of some CRI. (3)
To=2, and at Ty two CRIs begin; one for each of the two LSRAAs in the system.

Let {Tﬁ,s)}nzo be the subsequence of sequence {T,}n>g, which corsists of those time
instants when two CRIs begin simultaneously; one for each of the two LSRAAS in the system.
Clearly, T§)=To=2. Let DJ\+1, j=1,2,3, denote the total length of the unresolved arrival inter-
vals in subsystem j, at the time instant T). DY is then called "the lag of subsystem j at time
TE)." From the algorithmic operations in the system, we conclude: (1) D§21 and the values of
D?,{), are denumerable for all n and j. (2) D&’s:l, j=1,2,3. (3) Attime T}, the LSRAA in clus-
ter k, k=1,2, examines two arrival intervals: one from subsystem k which has length
min(D), A) and contains arrivals generated by a Poisson process with intensity Ay, and one
from subsystem 3 which has length min (D&EQ, A) and contains arrivals generated by a Poisson
process with intensity 0.5 A3. (4) The triple (Dﬁ{)s, J=1,2,3) describes the state of the system at

time T, and the sequence { Sy }nx0 i (DY, j=1,2,3) 50 is a three-dimensional irreducible and
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aperiodic Markov Chain.

The stability of the system is represented by the ergodicity of the three-dimensional Mar-
kov Chain {S; }1>0. In addition, at time ’I‘ , the backlogs of each of the two LSRAAS and of

the overall system are all respresented by the three lags, D,(,’_s, ,5—1,23 Given D

j=1,2,3, the expected system backlog at tme T& is Z AP, where V(d,)=

V({do)}151<3) _ Z A d{ is a Lyapunov function of the three system lags {d(’)}1<_,53 let C

=1

denote the state space of the Markov Chain {Sp)n>0, and let us then define the operator

AV(d) = AV({d9}¢c3), called a generalized drift, as follows:
AV(@d) = AV({d(’)}1<;<3) E{V({D;.5)1553) — VUDY, }1s,'g)|D(’)=d°),J—123}

. . 3 - .
= E($A,DE,, 1DP,=d®,j=1,2,3) ~ $Ad; 3=(d0) 5 € C
Fl Fl

The generalized drift in (4) can be used to establish necessary and sufficient conditions for the

ergodicity of the Markov Chain {S; },,0. To see that, let us define:
Pd & 2 P(an-rl =Elan = a-)

Fiv@ 2 (1_2)-1[ VO - 3 paz z"@’J ;
eeC

: 2€[0,1), deC

d())

CY)

&)

(6)

; where Fqv (z) is the generalized Kaplan function on the Lyapunov function V, [11].

From the results in [7], [8], [9], and [10], we can then express the following Propos:zon.
Proposition
If it can be established that:
() IAV(d)l<eo, foralldin C.
(1)  Ther+ exist finite subset H, of C and some nonnegative finite constant B, such that,
Fiv (z) 2 -B, forall zin[0,1), and all d in C-H,
Then,
(A) If there exists finite subset H; of C, and some €”>0, such that,
AV(d)<—¢’, for all d in C-H,
then, the Markov Chain {S; }n> is ergodic.
(B) If His a proper subset of C, such that,

_inf V(d) > sup V(d)
dg[C~H]) deH

" ";.- -’rr&- ,\“.\n AL ST CL T T WO ~._‘.: e T e e e e T T e ;’\'_
s iy e, B -, o 5

uuuuuu

8)

9)

(10)
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AV(@) =20, foralld in C-H (11)
then, the Markov Chain (S, },>0 is nonergodic. OO

Remark. Condition (8) is trivially satisfied for Markov Chains which are downward uniformly
bounded with respect to the Lyapunov function V; that is, for Chains such that,
P(V(Dp,41)<V(d, )~x)=0; for all x>¢, for some positive and finite constant ¢, and for all d, in C.
In the problem studied in this paper, when A3=0, two decoupled systems arise. Each of those
systems corresponds then to a local LSRAA, whose lags at collision resolution points form a
downward uniformly bounded Markov Chain; the Lyapunov function V(d) reduces then to d®,
for the system in cluster j, j=1,2, and the constant & equals then I_A_I =2, (see [4]).

We now express a lemma, whose proof is in the Appendix.
Lemma 1

Consider the Markov Chain {Sp)ne0 = (D%, j=1.2,3}ne0 and its Lyapunov function
V()= 3 A dY, and let C be the state space of {Sy}nx0. Let AV(d) and Fz v (2) be as in (4)

1<js3
and (6), respectively. Then,

— _ 3
i) [AV(d)! <o, foralld in C and all{};}): 3 A1
=l (12)

(i1) There exist positive finite constant B and some finite subset Hy of C. such that:

Fiv(z) 2~B, forall zin{0,1), all din C-Hp,and all {A;}: TA;<1 O (13)
=1
Due to Lemma 1, and in view of the Proposition, the search for the ergodicity versus the

nonergodicity of the Markov Chain (S, },50 reduces to the identification of appropriate proper-
ties, for the satisfaction of conditions (A) and (B) in the Proposition, respectively.

Consider T{, and let the lags {DY) }1<jc3 be sufficiently long, so that in the :ime interval
[TS), TE),1, each CRI from each of the two LSRAAS in the system, resolves an arrival interval
of length A, (as proven in the Appendix, the lengths of the lags (DY) }1<;c3 that satisfy this con-
.ution are finite with probability close to one). Given system Poisson rates {A;};<j<3, and for
Ea {/1u} as in (2), let us then define:

i=1,2 5 Ni({A}1,4): Given {A;}, the number of CRIs generated by the algorithm
in cluster i, in [T, T$), 1, when each CRI resolves arrival
intervals of length A, from both its local and the marginal
users. The first such CRI starts at T, and the last such
CRI ends at T&),.

AV(EA, (A D: The generalized drift in (4), for given Poisson rates {};},
when, in [TY), TE),], each CRI generated by either algo-
rithm in the system, resolves arrival intervals of length A.

i=1,2; AOV(d,, (5D Exryiz (118)-8+

+ [EON(, .40 [ Bagn, 11804 0

. e




TP T T T T T TN YNy TR Y

s
; Then, via (4), we easily derive the following expression:
s 3 A v M Ay
g e AV@s, ()= Qar—ADVEs, () + O+ )APVE,, ()
; A
; - 22BN (04).00) + EM2(0), 4)-2] (15)
v,
® ; where,
o Ep o, 12 {({TAHE{N1 ({2 },8)}-1]Ey i, {114)=
' =Ex i, 12{11A) + [E{N2({X;),0)-11Es i, {114) (16)
( e We note that Aﬁ)v@, {Kj }) in (14) is a generalized drift for the algorithm in cluster i. We now
> state a theorem whose proof is in the Appendix.
;I" Theorem 1
(i)  Let there exist some £>0, such that the two conditions below are satisfied:
g} ADV(d,, [A;)) <€
Ex
'

ADV(@,, () < (17)

Dl )

PR

Then, the Markov Chain {S, } 50 is ergodic at the Poisson rates {7\3- hsjss -

) (1) Let at least one of the two generalized drifts, A(i)V(EA, {kj}),i=1,2, be nonnegative.
Then, the Markov Chain {S, }n>g is nonergodic at the Poisson rates {A; }15j<3 . O

N
e }

- Remark: The stability analysis remains unchanged, whern the two random access algo-
’ rithms, in clusters 1 and 2, are full feedback sensing, instead. The full versus limited feed-
¢ ° back sensing choice affects only the transmission delays.

The conditions (17) in the Theorem define lower bounds on the (kj} regions for which the
" Markov Chain {S; },>0 is ergodic. Since the constant € in (17) can be arbitrarily small, and in

: combination with the statement in part (ii) of the Theorem, we conclude that the ergodicity
' bounds determined by (17) are tight.
" In the Appendix, and in Section VI.2 in particular, we describe the methodology regarding
.. the computation of the {A;} values for which the Chain {S; )0 is ergodic, as well as the per-
N tinent quantities and their recursions. In Table 1, we include the maximum rate A5 accepted by
™. the system, for varying A, and A3 values, as well as the maximum accepted symmetric rate
>, A"(h3)=A" =LA} = A3, for varying A3 values. We also include the maximum rate A3 accepted
N by the system, when A; =X, =0. We note that due to symmetries appearing in the system when
¢ AyandA, are interchanged, for each fixed rate A3, we only need to compute A, for A; values in
X the interal [0,A"(A3)). In Figure 2, we plot the boundaries of the (A,, A,) acceptable regions,
: parametrized by various A3 values. Those boundaries are clearly symmetric around the 45°
' straight line. In Figure 3, we plot A3 against A = A1 = A3, for symmetric two-cluster systems.
From Table 1 and Figures 2 and 3, we observe that whenever A3 is strictly positive, then the
] sum A]+Aa+A; is strictly less than 0.86; that is, strictly less than twice the throughput of each
K . local LSRAA. This is so, because when A3>0, some perc :ntage of the traffic generated by the
N
b 3
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< marginal users is always assigned for transmission to an even over'caded by local traffic
~ LSRAA. Thus, if the rate of the local traffic is close to the algorithmic throughput, then the
q e presence of marginal users results in instability of the LSRAA.

a

- IV.2. System Delays

P

JI

Y e The two-cluster algorithmic system induces regenerative points within its stability region

Thus, in essence, the methodology in (6] applies for the computation of the cxpected delays, in
each of the three subsystems. To see that, consider the sequence {S; }n20 = [DM, =1,2,3} 00 Of
lag vectors induced by the algorithmic system, at the time instants [T ),50. As established
before, the lag vector Sy is the unity vector. Let us define the sequence {R;};>; as follows:

R, = T§’=2, and each R; corresponds to some T mstant such that the lag vector S, is the unity
3 vector; R, is the first after R; such instant. Let Q , 121, j=1,2,3, denote the number of

- transmitted packets from subsystem j, in the time mterval ( O,R;]. Then, GU AQ(’) -QY

denotes the number of transmitted packets from subsystem j, in the time interval (R;, Rj;;], and
- for memoryless traffics, such as the Poisson, the sequences (GP 1}, j=1,2,3, are sequences of
e iid. random variables; thus, the sequences {Q¥};5;, j=1,2,3, are then renewal processes. In
X addition, if DY’ denotes the delay e ?enenced by the n-th transmitted packet arrival from sub-
N system j, then, the delay process { In21, }=1,2,3, induced by the algorithmic system is regen-
erative with respect to the process Ql )},21, and the process {G9};5, is nonperiodic for every j,
x since P(GY=1)>0, j=1,2,3. Let D denote the expected steady-state delay experienced by a

5 © packet in subsystem j, j=1,2,3, and let us define:
2 z0 SE(GPY | j=1,2,3
» SAL G
3 WO CE(Y DY}, j=1,2.3 (18)
e
. F
N H_E{R; -Ry}
Then, from the regenerative arguments in [6], we conclude:
. DD =W (ZD 171 | 5=1,2,3 (19)
< where, Z0 =3 H, j=1,2,3 (20)
- The computation of bounds on the expected delays D®, depend on the computation of tight
- upper and lower bounds on the quantities in (18). The pertinent quantities towards that direction
P and their recursions are included in the Appendix. We used them together with the methodology
3y in [6] to compute expected per packet delays. We present some of our results in Figures 4, 5, 6,
- and 7. In Figures 4 and 5, we plot expected per packet delays, for two symmetric systems
:'. (A =Xy), as funcdons of the Poisson intensity A3. In Figures 6 and 7, we plot expected delays
) against A3, for two asymmetric cases. From the four figures, we observe the advantage of the
C marginal users, in terms of expected delays. Even when the expected delays of the local users
g approach those that correspond to the throughputs of the LSRAAs, the expected delays of the
o marginal users remain low, never exceeding ten slots, for all the examined cases. The delay
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advantage of the marginal users, as compared to the local users, increases monotonically, as the
rate of their traffic increases.

. V. COMMENTS AND CONCLUSIONS

, In this paper, we studied a two-cluster interconnected system. Each cluster deploys the
jo® limited sensing random access algorithm in {4], and the interconnection is due to marginal users,
who dynamically select one of the two algorithms for their wansmissions. We performed
rigorous analysis of the overall system stability, and the expected per packet delays. Our stabil-
ity analysis generalizes easily to multi-cluster systems, with marginal users who may select
, either one of the local algorithms for their packet transmissions. For M clusters, the ergodicity
) conditions are as those in Theorem 1, only that then there are M inequalities in (17) with indices
varying from 1 to M. Then, when a marginal user with a packet to transmit observes simultane-
ous beginnings of K CRIs, (from the algorithms in K clusters, where 2<K<M), and is within the
examined intervals of all of them, he selects each one of those CRIs with probability 1/K.

The interconnection policy adopted is dynamic, and requires no a priori knowledge of the
raffic populations and characteristics, and of the states of the involved subsystems. It only
requires knowledge of the algorithmic rules, and monitoring of feedbacks from the time a packet
is generated to the time that it is successfully transmitted. In addirion, the adopted interconnec-
ton policy presents a significant delay advantage to the marginal users. In all cases, it maintains
the value of the expected per marginal packet delay below ten slots, even when the expected per
local packet delays approach their limit values within the stability region of the system. This
¢ delay advantage to the marginal users may be of high importance, when they transmit high prior-
ity data, and when dynamic cluster reconfigurations may result in temporary isolation of the
marginal users if the transmission of their data is delayed.
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) * X _ % *
:'. 13 Al >‘2 A )\l )‘2
: 0 < 0.43 0.43 0.43
g e
, 0.01 0.429
e 0.10 0.4288
X 0.001 0.20 0.4285 0.4278
; 0.30 0.4282
; 0.40 0.4280
jo
0.00 0.424
- 0.01 0.20 0.423 0.42
N 0.40 0.422
(U 0.00 0.372
; 0.10 0.370
3 0.10 0.20 0.368 0.36
N 0.30 0.364
N
h. 0.00 0.32
- 0.20 03 03 0.29
& 0.30 0.28
: 0.00 0.260
< . 0.10 0.245
@ 0.30 0.15 0. 240 0.23
;ﬁ 0.20 0.232
:: 0.00 0.198
- 0.05 0.190
: 0.40 0.10 0.180 0.17
0 0.15 0.170
- 0.00 0.132
N 0.50 0.05 0.12 0.11
- 0.10 0.11
,
5 0.00 0.062
» 0.60 0.01 0.06 0.04
- 0.02 0.05
!l
N *
For xl = kz =0 : AS = 0,68

: Table 1

o -

: Maximum Accepted Poisson Rates
Wandow Size: A = 2,33
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VI. APPENDIX

(L
e VI.1. Fundamental Results
2
- We start by proving some fundamental algorithmic properties of the system, which will be
s used for the proof of the theorem and the lemma in the main part of the paper.

30 Let us define the following quantities:

N Ni: The number of CRIs gencrated by the algorithm in cluster i,
- between the time instants TS and TE),, where i=1,2. The first
“ such CRI starts at TS, and the last such CRI ends at Tfli)l

~ .
3 8}‘) (k): The length of the arrival interval from subsystem k, k=1,2,3,
‘0 rcsolvcd by the j-th CRI generated by the al%onthm in cluster i,
y i=1,2, between the time points TS and T$);. We note that
5 188(k)<A; Vi, j, k.
- [(A8, +ud,): The length of a CRI, generated by either one of the two local
o LSRAAs, which resolves a length §; interval containing arrivals
«© from an intensity A Poisson process, and a length &, interval con-
N taining arrivals from an intensity 1 Poisson process.

"
X LY 2 E(SPG) o 63‘)(3)) 1} ; i=1,2
.

e L(’) BEUOBP) + A3 803N 1) ; i=1,2, 22 (A1)

> ) (M) . s .

. Ej'a(k) _L 3 E(PM0id) ;5 k=i3, i=1,2, j21

~ ° From the characteristics of each local LSRAA, (see [4] and section IV of this paper), we
> obtain:
[ E{l(Ax+ uy) Ix,y} > E{/(Ax+uy) Ix,y} = x 2

' IAx+uy) 1x,y}[1-A"Lsu

.-_‘ E{ uy) Ix,y}{ Ip E{l( 57 1=

= E(I(Ax+1y) IX,y}[1-0.43171] ; for A>0 (A.2)
y From (A.1) and (A.2), we thus obtain

; (A + A3) L“’ A E“’ +ME ()2

3 2 [A; + Ay - 1.29] L(’) L i=1,2

- (1 i (1) ,

. (ath) L3 > MNES+ME ()2 (A.3)
'¥ > )\1-+7\3-0.86] Lja s i=1,2, j22

@ In addition,
1

s a.l

4
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AV@ =& A Ei E; (D + X El EZQ +
Nx NZ 2 -
+23 TE 3G +A; T E 3 (3)ld} (A4)
FT o

3
From (A.3) and (A.4), we thus conclude, for ¥ A; < I:
El

i} N -
IAV@ | <max(0.43, A+As) E(T Ly 1) +
P

Nz (2) -—
+ max (0.43, A;+A3) E{Y L3 Id} <
P
1?3y 4By L2 13
<E{Z j'a d}+ {Z j'a' d} (A.5)
Fl Fl
; where,
© 16T oD =E(s L3 $L® 3
E(Ts - Ty 'dn=d}=5{}:; Lj.ald}=E[Zl ij'd} (A.6)
F J=

We note, that for d—see, 8{’(k) =4, V i, j, k, and we then obtain directly from (A.1) and
(A.4):

lim AV(@d) =
A3
=\ + l;){E{l(A[KI +5D)-A

+ [E{I(A[kl +A3])) —4 [_lim E(N, l&}-l”

d—)oo

F O+ x;){ E{I(AD\ + %)}-A

+ [E{I(A[Kz + 13])}-6] {_lim E(N; i d) —” (A.7)

dpoo

; where,

A3 _ —
E{I(A[A, + —2—])} + E({(A[A} + A3 D H1im E{N, [d}-1] =

d—sco




A -
=E(I(AD, + 7”])} +E{IA[A; +A3])) [lim E(N, 13)-1]
d—ee

We now state and prove a lemma.

Lemma A
For all given ;, i=1,2,3:

Ni . - Ni . - - -
Pl T LY S.xld] < P[Z‘; L < xld'J ‘forallx, foralld>d, fori=l.2  (A9)
= 2

Thus,
E{Z L 13 ’} E{Z L } foralld> &, for i=1,2 (A.10)
And,
IAV@)! <2lim E{ZL } (A.11)
dosee | j=1
Proof

Letd = {d9 J1<j<3. Given d and d®, consider k CRIs generated by the LSRAA in cluster
1. %.et l; denote the length of the j-th such CRI, and let those lengths be temporarily fExed. Let

N(3 };) denote the number of CRIs generated by the LSRAA in cluster 2, within Y / slots.
i=1 i=1
Thcn since P(l(ld,)<x)_P(l(Ad2)Sx) if d.>d;, we easily conclude that
P(\I(z [H)gx 1dP=w d(’))ZP(\I(Z 1[)<x1dP=y,d®), for y < w. Since the latter inequality is
=1 =1
true for all k and {/;}, and since P(lisxld)S_P(linld ); for all [, x, andd > d, we conclude
(A.9). (A.10) is clearly deduced by (A.9), and (A.11) results from (A.10), in conjunction with
(A.5) and (A.6). O
Due to Lemma A, and (A.11) in particular, to prove (12) in3Lemma 1, it suffices to show
that the limit in (A.11) is bounded, for all {A;}<jc3 such that ¥ A;<1. We will perform the
=1
latter study later. At this point, we will state and prove a proposition, which is related to part (ii)
of Lemma 1.

Proposition A
Al

Given {A;}<jc3, such that A _ 37 A < 1, given some bounded natural number /, such that
J-l
AA>1, let us define,

) 3 .
B 32, dO <AIA) (A.12)

=

H, 2 (d




! \
: A -
) Pans - Xpdz (a.13)
{ K & VE<V(d)-MA
K
:;', ; where pq 5 is as in (5). Consider Fg v (z) in (6). Then,
) —
¥ Fiv (@2-1A-Piy; SIV@-V@lpiz
N & V(d)-VE>MA
o -,
, ; for all zin[0, 1), and all d in C-H, (A.14)
¢
N Proof
© From (6), we obtain:
. - AlA A
-1 z*~1
: Fiv(@) 2 (1-2)" 2Y@{ [1-Pg, 1 & : +
av@2(1-2)" z (1-Pg ] R
Ky A -
B Z -
4 +1 [Pan- T2OTO Pd,EJ} (A.15)
s z & VE-V(d) < ~MA
N Noting that (1-z)™! (l—z)‘)SI, for all z<1 and A<1, and that (z~1)"1(z2—1) < a, for all z<1 and
~ a>1, we obtain from (A.15), the inequality in (A.14). O
-.‘ Let us now state and prove another lemma.
o Lemma B
P A
o Given {}\.j }15j<3, such that A ) ?»j<1, then, for any finite natural number /, and the result-
e =l
‘ '. ing then tinite subset H, as in (A.12), we have:
- Paa: TVE@-V®] pas <
v & V(@-V@>MA
- < lim P(T), = TO > xf‘-l-@ ¥ xP(T&; - TY =x13)
. o ol
v a-1
: ; forall zin [0,1), and all din C (A.16)
- Proof
¢ Consider the variables Nj, i=1,2. defined in the beginning of this appendix. Then, we
) obtain:
P(V(d)-V(@)>AxA | 5><P[ (M +A3)NLA + (A +3 N2 A-A[TE) -TF [>AxA E]
¢ < p[ AN N, [-Ax— (TS, -T®] > o:a} =
"
: a.d
q
g
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=P[Tf.§)1 -T® <A[N1+N2]—Axla] (A.17)
; where,
T, =T® 2N; +N, (A.18)
From (A.17) and (A.18) we thus obtain:
!c-i) <

Piax & POV ~ VESAXA IG)<PN; +N; x5

<P(TE), -TO > xﬁ—ld) (A.19)

Since (A.19) is true for all x, it also implies,

TIV@-VE] piz < L x P DT -TP=x1d)
& V(@)-VE>NA A (A.20)

l-—.—
e

Setting x= [ in (A.19) and (A.20) and multiplying, gives the first part of (A.16). Now, due
to Lemma A and its proof, we also obtain:

PTS), ~ TS <x 1d) PTE - TY <x1d);
ford>d’
which gives the last part of (A.16). O

We now express a proposition, which ties the results in lemmata A and B with Lemma 1, in
the main part of the paper.

Proposition B

3
() If lim E{Z L3 Id}<oo for all {A;}<jc3 such that 5 Aj<1, then (12) in Lemma 1 is

doeo | =1 =1
satisfied.

(i)  If there exist finite integer /, and finite positive constant B, such that,

lim P(TE), T(S>>1

d—soo

- 3
!d) S xP (TS -TO=xI1d)<B’, Vi2l, V[xj}lsjg:zxj<(1A 21)
P 2

x>1

A-1

then, (13) in Lemma 1 is satisfied with B=/,A+B’” and H; as in (A.12), with /=/,. O

The proposition is a direct result of the statements in Lemmata A. and B. Let us now con-
sider the variables N;({4;}, A), i=1,2, defined in Section IV.1 of the paper, and the generalized
drifts A“)V(d_\, [k . 1—1,_, and AV(dA, {l ), in (14) and (15) respectively. Towards the
proof of Theorem 1 in Section IV.1, we then state and prove a lemma.

Lemma C
Let the variables N;({};},4), i=1,2, be such that:

a.s




-----

There exist, finite natural number n,, p: 0<p<1, and finite positive constant ¢, such that:

3
P(N;({A;}, A)=n) <cp™, ¥n>n,, ¥(A;}: T A <1, i=1,2 (A.22)
1
Then,
(i) If the condidons (17) in Theorem 1 are satisfied for some €>0, then, there exists a finite

subset Hy of C, and some €>0, so that (9) is satisfied. That is, the Markov chain {S, };0
is then ergodic.

(if)  If at least one of the two-generalized drifts A(i)V(HA, {A;}), i=1,2, is nonnegative, then
there exists a proper subset H of C, so that (11) is then satisfied. That is, the Markov
Chain (S, }n20 is then nonergodic.

Proof

3
(1)  Let (A.22) be true, and let 3} lj <]. Define then, ai s)}lg I E5{IlA}=A |I. Given € in
=l <
(17), select I, such that [, >n,andac ¥ p° = £ =(1—p)’1 ac p1°+1; that is, select
nl,+1 2
I, = max(ng+1, UnpT ' In(e[1~pl20c] ™ —1).  Select then, H; 2 {32 [d9 )13 :
dV<,, dP<l, d®<21,}. Then, due to (17), and in conjunction with (A.9) in Lemma A
we conclude: AV(E)<—%, for all din C-H,. The proof of part (i) in the Lemma is now

complete.
3 N -
(i)  Let (A.22) be true, and let 3 A;j <1 . Let ADV(d,, {A;))=20, for either i=1 or i=2. If then,

Fl -
there existed H; subset of C, defined as in the proof of part (i), such that AV(d)<-¢, for all
C-H, and some €>0, then due to (A.22), the constant /, in H; could increase (remaining
finite), to give AYV(dy, {%;})<0. Thus, part (i) of the Lemma is true. [J

As it is apparent from the statements of Proposition B and Lemma C, to complete the
proofs of Lemma 1 and Theorem 1, in Section IV.1, we need to study the statistical behavior of
the variables involved in the description of the time interval [T$* T§), 1, when the lags at T
are sufficiently long, so that all CRIs in [T, T$), ] resolve arrival intervals of length A, from all
the three subsystems. We perform such studies below.

V1.2. Studies for Sufficientlv Long Initial Lags

. Qur objective here is to study the behavior of the variables N;({A;}, 4), i=1.2,
AYV(dy, (A;}).1=1,2, and AV(da, (A;}), defined in Section IV.1. For tractability, we introduce
simpler notation. Give {A;};<j<3, we first define:

x & A i=1,2

a.6
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w A, i=1,2

For the rest of this subsection, we assume that every CRI, within the interval [T¢» TE), ],
resolves arrivals in a window of length A, from all the relative subsystems; that is, a CRI gen-
erated by the algorithm in cluster i, resolves a A-length window from subsystem i, and a A-length
window from subsystem 3. We then define:

i=1,2, ; Pi(e,m): The probability that T{)+e is a collision resolution
point for the LSRAA in cluster i, and that it is the
m-th such point. We note that m=1 refers to the end
of the first CRI, which starts at T$).

i=1,2 ; PO(e,m): The probability that T$); = TS =, and there are m
CRIs for the algorithm in cluster i, in [T, T§) ).

i=1,2 ; PY(m): The probability that there are m CRIs for the algo-
rithm in cluster i, in [T, T, ).

Ly The length of a CRI, when it resolves an interval of

length d containing arrivals from an intensity A Pois-
son process, where A and d are such that, Ad=x.

0<sn<k ; I kon: The number of slots needed by either one of the two
LSRAAs in the system to transmit k packets, when n
of them have counter values equal to one, and the
remaining k-n packets have counter values equal to

two.
0<i<e—1¢ ; Pi(e,m;l,n): The probability that T$ +¢ is a collision resolution
i=1.2 point for the LSRAA in cluster i, that it is the m-th

such point, that T§), — T{V>e, that the last before
T$+e collision resolution point for the LSRAA in
the other cluster occurs at T+ [, and that it is the
n-th such point.

i, =1,2; P (e,me,n):

The probability that T, = T{?+e, and that this point
e =11, ifi=2 is the m-th collision resolution point for the algo-

2, ifi=1 nthm in cluster i, and it is the n-th such point for the
algorithm in cluster 1.

To start with, the deployed LSRAAs induce the following recursions, regarding the lengths
ln.x-n (see [4]):

P(ly k-1 =m) =Pl g =m-1)
P(lg=m) = P(l, o = m~1)

Pllio=1)=Pllho=1)=Ply =2)=P(l) ; =2)=1

a.7
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k>2

makﬂ} ; P(lp x-2=m) =272 { P(ly o=m—2)+P(ly gp=m—1)+2P()y_; 0) = m—2)}

k=n

n23 s Pl xn=m)=27" {P(lk.o=m-2)+9(1n.k—n=m-1)+nP(1k-1.o=m-2)+
m>2k-1

n-1
+3 [‘f] P(li.k—i':m—l)} (A24)
=2

In addition, for| | denoting integer part, we have:

k
Pl=m)= X °_x;k'.' Pllco=m) (A25)
o<is | m;l |

We also have the following recursions and expressions:

j= P(, _,=¢) ; if m=1
1e>11,nZ} ; Pile,m) =94 o e (A.26)
= T Pi(k,m-1)P(ly, =e~k); if m22
k=m-1
For,
A 1,ifi=2 A 1, if x>0
ie={2 ifizs1 Y =10,ifx<0 (A.27)
we also have:
i=1,2, m>1, e2m; P;(e,m;0,0) = Pi(e,m)P(/x_-y>¢) (A.28)

i=1,2,m21,k>1,e2m;P; (e+k, 1;e,m)=P (¢,m;0,0)P(y_>KP(lx,_y=e+)P™ (ix —y>€) (A.29)

m>2, eZml
i=1,2 J ’ Pi,ie (e,m;e, 1)=P~\(e,m)P(1x,k_y=e) (A.30)
m=2
nz1 min(e—i-1,e-m+1) 1
e2m ¢ ; P;(e,m;/,n) = > Pi(c—k,m-l;I,n)P(l,i=k)P(1xk >e-NP~ (lxi‘ >e—k-1I) +
>n k=1
i=1,2
e+l-m 1
+U(-m) Y P, (Lme~k.m=1)P( =k)P(lx >e-NP™ (Ix >I+k—€) (A 31)
k=e—i+1
a8
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t{ > e-1 min(e~t1,e+1-m)

b @ n>2 Py (e,m; c’n)=z—_§+1 El P;(e—k,m—1;/,n—1)P(l,, =k).

I P(l =e—DP"! (Iy_>e—k~1)

™, e-1 min(e—i-1,e+1-n)

’ + ¥ Y P (e—kn-1;4m=1)P(y =k)PUy=e-DP" () >e—k-)  (A.32)
' ® Em-1 k=1

ﬁ PV (e,m) = 3 P;; (e,me,n);i=1,2 (A.33)
% n )

’ . .

» POm)= 3 POe,m);i=1,2 (A34)
qe® e2m )

> Referring to the expressions in (14) in Section IV.1 of the paper, and from (A.33), we also
N obtain:

k. i=1,2; AOV(dy, (5D = T T PO (e, m)[e-mA]

% m2] e2m

‘

- =¥ Y PY%, m)[e—m—] (A.35)
':' m21 e2m

> Subject to the satisfication of Lemma 1 and Theorem 1, in Section IV.1, the {lj}lsjg

| values for which the Markov Chain {S; }>¢ is ergodic, are found as those that make the expres-

. sions in (A.35) negative.

3 Via some tedious manipulation of the expressions found in this section, which we do not
- include here, we found the result stated in the proposition below.

o Proposition C

: Given €>0, there exist positive integer m, and O<p<1, such that:

) i=1,2; ¥ PO <e+p E PO

3 m+1

3

‘ Ym>mo , ¥ (Ahges © LAy <1 (A.36)
) : We are now ready to complete the proofs &f'Lemma 1 and Theorem 1, in Section IV.1. We
L, do this, in Section V1.3 below.

.‘ . V1.3 The Proofs of Lemma | and Theorem 1

From Proposition C and expression (A.36), we conclude that there exist constants n,, p,

- and ¢, such that (A.22) in Lemma C is satisfied. Thus, the statements in the latter Lemma hold.

) In addll'vtion due to (A.22), (A.21) in Proposition B clearly holds as well then, and also
3

limE(Y} L 15}<oo, for all {A;}1<jc3 such that ¥ A;<1. Thus, the statements in Proposition B
J doee il =1
. and in Lemma C all hold, and so do Lemma | and Theorem 1.

a9




V1.4 Recursions and Systems for Delay Analysis

Here, we present the quantities needed for the computation of the expected per packet

delays, and their recursions. Let us define, for i; as in (A.27):

During the process of the algorithmic system, the event of
being at some time instant t when the first slot of a CRI for
the LSRAA in cluster i begins, that at t the lag for subsys-
tem i is d; and the lag for subsystem 3 is 33, that the last
before t CRI for subsystem i, starts at t-/, and that at t-/ the
lag for subsystem i, is d;_ and the lag for subsystem 3 is ds.

Given the event (d;, 33;(/, di_, d3}), the length of the time
interval until the first after that occurence of some T with
Sn equal to the unity vector.

Given the event (d;, 83; {/, d; , d3}), the expected cumula-
tive delay of all the packets from subsystem j that are
transmitted from the instant when the above event occurs,
to the instant when the first after that T$) with S, equal to
the unity vector occurs.

Given the event (d;, 83; {/, d;_ , d3}), the expected cumula-
tive delay that those packets from subsystem j, which are
waiting at the point of the event, have already experienced.

Given the event (d;, 83; {/, d;_ , d3}), the expected cumula-
tive waiting time of those packets from subsystem j which
are transmitted during the CRI of the LSRAA in cluster i
that starts with the event.

Given the event (d;, &3; {/, d; , d3}), the expected cumula-
tive transmission time of these packets from subsystem j
which are transmitted during the CRI of the LSRAA in
cluster i that starts with the event.

Given that during some CRI from any of the two LSRAAs,
n packets have counter values equal to | and k-n packets
hae counter values equal to 2, the expected cumulative
delay of all the packets transmitted from the point of the (n,
k-n) occurence to the end of the CRI.

To start with, the operations of each of the two LSRAAs give rise to the following recur-

(di, 83; {1, i, ds)):
1i=1,2
o
(@ hi(d;, 83 (L,d;,, d3}):
: s i=1,2
v (d;, 83; (1, di, ds ) :
i=12,j=123
AP (d;, 85; {1, 4, d3)):
;1i=12,j=123
8 (d;, 8; {1, di, d3)) :
P i=12,j=13
wl (d;, 85; {1 d;,, d3)) :
i=1,2,j=13
Zn.k—n :
:n20, k>n
N sions:

0y '-f I.;I{

I.:J'\"'y(‘ o

Z50=0,Z10=1Zgx =k+Zo; k]

a. 10
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.
:S. Ziy1=k+Zgp 1 =2k-1+Z4 30 k22 (A.37)
'
i a a
( M zﬂ.k—-n=k+2—n2[‘il] Z; i i 122
; =0
ﬂ: Then, defining
:“ ) A3 ;ifl21
y vi=1 2, (A38)
R = ;ifI=0
2
N A; min (d;, A); if j=i
(4 i =) v3 min (8, &) ; j=3 A-39)
: we have:
D
N i=1,2;wd (d, & (L di, 3D =wl (¢, &) =
a
o §;(\ min(d;, 4) + v3 min(83, AT+ exp{—A; min(d;, 4) ~v3 min(33, 4)}
X . min(d;, A) +v3 min(Ss, A
;: . [A; min(d;, A) k'V3 min(3; Zeo (A40)
3 kZO .
‘. In addition,
. i=1,2; 80 (1, 85; (I di,, 3N =AD (1, 83 (L di, d3) = 1.5%; ; ¥ &3, (Ldy, d3)
: i=1,20(d;, 1; {4 dy, 3 =APNG;, 1; (Ldy, d3))=1.5h3; V £> 1 (A.41)
: .
X 69 (d;, 8; (0, di,d3 ) = AP (&, 83; (0, dy, d3}) =0, for &= d3
AD (d;, d3; (0, 47 , &3 1) = AP (da, d; {0, dy, d3)); j=1.2,3
* i=12; AP 15 (0, 1))=260 (&, 1: (0, &, 1D =15h3; ¥di, &

i=1,2; AP (d;, 8 5 {1, dy,, 43)) =0 @, 83 {4 6y, &3 )) i ¥ <4, ¥55, (L &, &3)

AP (d;, 85 (1, 4, d3)); ¥ 8524, if 21
=12 00 @0 8 (h do D=1 11 40 (g, 853 (1, o) ¥ B4, 10

, 1.5 ; if1=0
=1, A (@, 835 (L 1, d3D={ ,
[+ DA G121, ¥ i B3, ¢
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For v as in (A.39) and {; as in (A.40):
i=1,2 . :
j=1,2,3} P AD (@, 8y 5 (1 di, d31) - 60 (d;, 85 (L b, )=

AQ(d;+m-AT1;, 83 +m-min(8s,A); {-+m,d; . d3 ))-m[A; dj~E;]
M S+ 1):W.P. Plg oy =P v, >+

AD (di+m-A71E;, 83+m-min(83,A); {0,d; +m+-AL' §; ,83+m-min(3;,4)})
~mAjdj=G; =M m( S+ 1 w.p. PUlg v, SmIP(l, v, =)

AD(d; +m-A3' Gy, , d3+m—min(ds,A); {m~1,d;, 83 ))—(m-DI}; §;—dj)

—A(m—0){ %iﬂ], for m>[;w.p. P(lg_d.\,,:m)l?(l;;i+v3 >m-{)

hl (dly d3 s {09 dzy d3}) = hz(d29 d3; (O’ dlv d3 })

Ford; <A, di <A, d3 $A;hi(d;, d3 3{0, di, d3})=1; w.p. Pllgg, = DPUg g, =1)

m + h;(d;+m~A] 1 §;, 83+m-min(83,A); (H+m, d;_, d3})

3 W.p. P (g v, =m) Pl 4y, > m))

m + h;(di+m-A]! §;, 83 + m-min(83,4); {0, di +m+-A7'; ,83+m-min(5;,4)})
s W.p. Pl v, =m)P(lg_iv,=m+)

m + by (d; +m—A7'§; , d3 + m~min(ds,A);{m-1d;, 83}), form >/,

3 w.p. P(lg_sv,=m)P(lg 4y, > m—))

We note that the expected value H in (18) is such that, H = hy (1, 1; {0,1,1})
=hy (1,1; {0, 1,1}).

Defining,

00 (d;,83)= ¥ 60(di.8;(0di.d3}))P(d;,83:(1d; .3 ) 1d;,83)
(Ld,. ds)

(A42)

(A.43)

(A.44)




we also obtain:

v (4, 8

;fordi <A, 4 SA, dysA

-

v (d;,85;{1,d; . d3)) =
pi1=1,2
=1,2

.

’,

0 (d;,85;(0,d;,d3 ) =
;i=1,2
=1,2

.

......

i=1,2y® (1,1; (0,1,1}) =<

v, d3; (0, dy, ds )=+

v (dy, ds; (0, dg, d3} =yP(dy, d3; (0, dy, d3}) 5 j=1,2,3

'w,ﬁ) (1,1+69(1,1; {0,1,1)), forj=1,2
s W.p. Pl 12=1)P(h 12 = 1)
wi® LD+wH QD+
+6f) (1,1; {0,1,1}) + 6 (1,1;{0,1,1}), for j=3
\; w.p. P(ly, 43,12 = DP(h, +2,12=1)

(A.45)

; (0, d; , d31) =0, if 83 # d3, i=1,2, j=1,2,3

(Wl (d;,d3) +89(d;, da; (0, dy,, d3))

, for j=1,2; w.p. Py d.+a,, 12 1P g +452,12=1)
wi (d;, d3)+wl (d;, d3)

+08)(d;, d3, (0, di,, d3}) + 08 (4, d3; (0,d;, ds)),
g for j=3; w.p. P(lyd.+4,3,12=1)P(, g, +ds2,12=1)

(A.46)

wi(d;,83) +60(d;, 8; {1, di,, d3})

+ 9 (d;+m-A;'G;, 83+m—min(33,4)
s(H+m,d; ,d3})

; w.p. P(Ig,4v,=m) P(lg v, > m+])

w(d;,83) +00(d;, 85;(1,d; ,d3 })

+ Y (d;+m-A7! {;,83+m-min(33,A);

{0,d; +m+-A'L; , 83+m-min(83,A)})

; W.p. P(lgi+v3 =m) P(Igv_vg =m-+{)

(A.47a)

v, +m-A{1¢;, . d3+m-min(d;,A);
{ m_lv di ’ 83 })

,for m>{; w.p. F‘(Ig¢ +v, TMP(lg 4y, >m—1)

(A.47b)




-
: wi(d;,85) + 0(di, 8; (1, ¢y, d3))
e + YO (d+m-A7 G, 83+memin(S, A); (F+m,d;_d3 })
s W.p. P(lg vy =m) Pz v, > mH)
o wi(d;,83) +0(d;, 83; (4, d; .03 )
i-03:{1,d; ,d3}) = (A.482)
© W GSLA B2 (0 ) + 00, . +
y (di+m-Ai' G, 83 +m-min(33,4;
(0,d;, +m+-A{1§; ,8;+m—min(83,4)})
. . . W.p. P(lgi+v’ =m) P(lg.t.*v, m"‘[)
(w(dg ,d3) +0£)(d;, . d3)
, +yP(d;, +m-A{! ¢, d3+m-min(d3,4); {m1,d;, 83 }),
(d, 85 (hdids D=1 gormor: (A.48b)
;W.P. P(l;.hw, =m)P(I§i+‘,3 >m-l)
~We note that the expected value WO in  (18) is such that
WO = yP(1,1;{0,1,1) = yH(1,1;{0,1,1}), j=1,2,3.

b The relationships included in this section induce infinite dimensionality linear systems. We
used the methodology in [6] to derive upper and lower bounds on those systems, and subse-
quently upper and lower bounds on the delays DY, j=1,2,3.
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